November digest – Recap of our Novelis Research posts about the various existing technologies in the field of language modeling, especially with LLM.

At Novelis, we are committed to using new technologies as tools to better respond to our customers’ operational challenges and thus better support them in their transformation. That’s why we have an ambitious R&D laboratory, with substantial investments: 26% of revenues are invested in research.

To keep you up to date with the latest scientific news, we’ve created a LinkedIn page dedicated to our Lab, called Novelis Research, check it out!

Let’s recap all Novelis Research articles from November. This month, our team was pleased to share with you the latest news about the various existing technologies in the field of language modeling, with a focus on LLM. Here are the posts we shared with you:

StreamingLLM : enable LLM to respond in real time

🤖 StreamingLLM: Breaking The Short Context Curse ✂️

Have you ever had a lengthy conversation with a chatbot (such as ChatGPT), only to realize that it has lost track of previous discussions or is no longer fluent? Or you’ve faced a situation where the input limit has been exhausted when using language model providers’ APIs. The main challenge with large language models (LLMs) is the context length limitation, which prevents us from having prolonged interactions with them and utilizing their full potential.

Researchers from the Massachusetts Institute of Technology, Meta AI, and Carnegie Mellon University have released a paper titled “Efficient Streaming Language Models With Attention Sinks”. The paper introduces a new technique for increasing the input lengths of LLMs without any loss in efficiency or performance degradation, all without model retraining.

The StreamingLLM framework stores the initial four tokens (called “sinks”) in a KV Cache as an “Attention Sink” on the already pre-trained models like LLaMA, Mistral, Falcon, etc. These crucial tokens effectively address the performance challenges associated with conventional “Window Attention” in LLMs, allowing them to extend their capabilities beyond their original input length and cache size limits. Using the StreamingLLM framework can help reduce both the perplexity (which measures how well a model predicts the next word based on context) and the computational complexity of the model.

🎯Why is this important? 🎯This technique expands current LLMs to model sequences of over 4 million tokens without retraining while minimizing latency and memory footprint compared to previous methods.

RLHF : adapt AI models with human input

🤖Unlocking the Power of Reinforcement Learning from Human Feedback for Natural Language Processing📖

Reinforcement Learning from Human Feedback (RLHF) is a significant breakthrough in Natural Language Processing (NLP). It allows machine learning models to be refined using human intuition, leading to more contextually aware AI systems. RLHF is a machine learning method that adapt AI models (here, LLMs) using human input. The process involves creating a “reward model” based on human feedback, which is then used to optimize the behavior of an AI agent through reinforcement learning algorithms. Simply put, RLHF helps machines learn and improve by using the insights of human evaluators. For instance, an AI model can be trained to generate compelling summaries or engage in meaningful conversations using RLHF. The technique collects human feedback, often in the form of rankings or preferences, to create a reward model. This model helps the AI agent distinguish between good and bad outcomes and subsequently undergoes fine-tuning to align its behavior with the preferences identified in the human feedback. The result is more accurate, nuanced, and contextually appropriate responses.

OpenAI’s ChatGPT is a prime example of RLHF’s implementation in natural language processing applications.

🎯 Why is this essential? 🎯 A clear understanding of RLHF is crucial to understanding the evolution of NLP and LLM and how they offer coherent, engaging, and easy-to-understand responses. RLHF helps AI models align with human values, providing answers that align with our preferences.

RAG : combine LLMs with external databases

🤖The Surprisingly Simple Efficiency of Retrieval Augmented Generation (RAG)📖

Artificial intelligence is evolving rapidly, with large language models (LLMs) like GPT-4, Mistral, Llama, and Zephyr setting new standards. Although these models have improved interactions between humans and machines, they are still limited by existing knowledge. In September 2020, Meta AI introduced an AI framework called Retrieval Augmented Generation (RAG), which resolves some issues previously encountered by LMs and LLMs. RAG is designed to enhance the quality of responses generated by LLMs by incorporating external sources of knowledge and enriching the LLMs’ internal databases with accurate and up-to-date information. RAG is an AI system that combines LLMs with external databases to provide accurate and up-to-date answers to queries.

✨RAG has undergone continual refinement and integration with diverse language models, including the state-of-the-art GPT-4 and Llama 2.

🎯Why is this essential? 🎯Reliance on potentially outdated data and a predisposition to generate inaccurate or misleading information are common issues faced by LLMs. However, RAG effectively addresses these problems by ensuring factual accuracy and consistency. It significantly mitigates the risks associated with data integrity breaches and dissemination of erroneous information. Moreover, RAG has displayed prowess across diverse benchmarks such as Natural Questions, WebQuestions, and CuratedTrec. This exemplifies its robustness and reliability. By integrating RAG, the need for frequent model retraining is reduced. This, in turn, reduces the computational and financial resources required to maintain LLMs.

CoT : design the best prompts to produce the best results

🤖 Chain-of-Thought: Can large language models reason? 📖

This month, we’ve been diving into the fascinating world of language modeling and generative AI. Today, we’ll be discussing on how to better use these LLMs. Ever heard of prompt engineering? This is the field of research dedicated to the design of better prompts in order for the large language model (LLM) you’re using to return the very best results. We’ll be introducing one such prompt engineering technique: Chain-of-Thought (CoT).

CoT prompting is a simple method that very closely resembles the way in which humans go about solving complex problems. If a problem seems a little long or a little too complex, we often tend to break that problem down into smaller sub-problems that we can more easily reason about. Well turns out this method works pretty well when replicated within (really) large language models (like GPT, BARD, PaLM, etc.). Give the model a couple examples of similar problems, explain how you’d handle them in plain language and that’s all! This works great for arithmetic problems, commonsense, and symbolic reasoning (aka good ol’ fashioned AI like rule-based problem solving).

🎯 Why is this essential? 🎯 Applying CoT prompting has the potential to produce better results when handling arithmetic, commonsense, or rule-based problems when using your LLM of choice. It also helps to figure out where your LLM might be going wrong when trying to solve a problem (though the why of this question remains unknown). Try it out yourself!
Now does this prove that our LLMs can really reason? That remains the million-dollar question.

Stay tuned for more exciting news in the coming month!

October digest – Recap of our Novelis Research posts about on language modeling technologies (LLM)

At Novelis, we are committed to using new technologies as tools to better respond to our customers’ operational challenges and thus better support them in their transformation. That’s why we have an ambitious R&D laboratory, with substantial investments: 26% of revenues are invested in research.

To keep you up to date with the latest scientific news, we’ve created a LinkedIn page dedicated to our Lab, called Novelis Research, check it out!

Let’s review all our Novelis Research articles for October. This month was dedicated to linguistic modeling technologies, and LLMs in particular. In two informative articles, our team of experts shared with you the existing technologies. Here are the messages we shared with you:

LLM (large language model) : type of artificial intelligence program that can recognize and generate text.

🤖Language Modelling and Generative AI📖

This month’s focus is on language modeling, an innovative AI technology that has emerged in the field of artificial intelligence, transforming industries, communication, and information retrieval. Using machine learning methods, language modeling creates language models (LMs) to help computers understand human language, and it powers virtual assistants and applications like ChatGPT. Let’s take a closer look at how it works.

For computers to understand written language, LMs transform it into numerical representations. Current LMs analyze large text datasets, and, using statistical and probabilistic techniques, they use

the likelihood of a word appearing in a sentence to create the words’ vector representations. LMs are trained through pretraining tasks. Such a task could involve predicting a word based on its context

(i.e., its preceding or following words). In the sentences “X is a small feline” and “The X ate the mouse”, the model would have to figure out that the X refers to the word “cat”.

Once these representations are created, they can be used for different tasks and applications. One of these applications is language generation. The procedure for generating language using a language model is the following: 1) given the context, generate a probability distribution for the next token over all the tokens in the vocabulary; 2) pick the token with the highest probability; 3) add this token to the sequence, and repeat. A function that computes the performance loss of the model checks for correct responses and updates the model accordingly.

🎯Why is this essential? 🎯 All generative AI models, like ChatGPT, use these methods as the core foundation for their language generation abilities.

✨ New models LLM models are being released every other day. Some of the most well-known models are the proprietary GPT (3.5 and 4) models, while others, such as LLaMa and Falcon, are open-source. Recently, Mistral released a new model made in France, showing promising results.

Optimization of large models : improve model efficiency, accuracy and speed

🤖Unlocking LLM Potential: Optimizing Techniques for Seamless Corporate Deployment✂️

Large Language Models (LLMs) have millions or billions of parameters. Consequently, deploying them for use in corporate tasks is a challenging task, given the limitation of resources within companies.

Therefore, researchers have been striving to achieve comparable or competitive performance from smaller models compared to their larger counterparts. Let’s take a look at these methods and how they can be used for optimizing the deployment of LLM in a corporate setting.

The initial method is called distillation. In distillation, we have two models: the student and the teacher. The student model is trained to replicate the statistical behavior of the teacher model, either focusing on the final predictions or the hidden layers of the model. The second approach, called quantization, involves reducing the precision or bit-width of numerical values, optimizing computational efficiency and memory usage. Lastly, pruning entails the removal of unnecessary or less critical connections, weights, or neurons to reduce the model’s size and computational requirements. The most well-known pruning technique is LoRA, a method crucial for achieving efficient and compact large language models.

🎯Why is this essential?🎯 Leveraging smaller models to achieve comparable or superior performance compared to their larger counterparts offers a promising solution for companies striving to develop cutting-edge technology with limited resources.

Stay tuned for more exciting news in the coming month!

GPT-3.5, GPT-4, or BARD? Evaluating LLMs reasoning ability in zero-shot learning and performance boosting through prompts

Discover our scientific publication “GPT-3.5, GPT-4, or BARD? Evaluating LLMs reasoning ability in zero-shot learning and performance boosting through prompts” published in Elsevier and reviewed in ScienceDirect.

Thanks to the Novelis research team – notably Jessica López Espejel, Mahaman Sanoussi Yahaya Alassan, El Mehdi Chouham, El Hassane Ettifouri, Walid Dahhane – for their know-how and expertise.


Large Language Models (LLMs) have exhibited remarkable performance on various Natural Language Processing (NLP) tasks. However, there is a current hot debate regarding their reasoning capacity. In this paper, we examine the performance of GPT-3.5, GPT-4, and BARD models, by performing a thorough technical evaluation on different reasoning tasks across eleven distinct datasets. Our paper provides empirical evidence showcasing the superior performance of ChatGPT-4 in comparison to both ChatGPT-3.5 and BARD in zero-shot setting throughout almost all evaluated tasks. While the superiority of GPT-4 compared to GPT-3.5 might be explained by its larger size and NLP efficiency, this was not evident for BARD. We also demonstrate that the three models show limited proficiency in Inductive, Mathematical, and Multi-hop Reasoning Tasks. To bolster our findings, we present a detailed and comprehensive analysis of the results from these three models. Furthermore, we propose a set of engineered prompts that enhances the zero-shot setting performance of all three models.

Elsevier is a data analytics company that helps institutions, health and science professionals improve their performance for the benefit of humanity.

ScienceDirect is the world’s leading source for scientific, technical and medical research.